EE 508
Lecture 20

Sensitivity Functions
« Comparison of Filter Structures
« Performance Prediction



Review from last time

<

What causes the dramatic differences in performance between these two structures?
How can the performance of different structures be compared in general?
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Review from last time
Effects of GB on poles of KRC and -KRC Lowpass Filters

A Im
Over-order X
pole ) 4
K
Actual “desired” poles
X

Desired poles > X



Review from last time

Dependent on circuit structure
(for some circuits, also not dependent
on components)

Consider:

R Vour

Dependent only on components
(not circuit structure)

1
(s) = 1+RCs
w
T(s) = —0
(s) S + W,
1
wO =



Review from last time

O
m

Theorem: If f(x, ..X,,) can be expressed as f = Xial Xzaz X

where {a,, a,,... ..} are real numbers, then S; IS not dependent
upon any of the variables in the set {x,, ..X,} |

Proof:
f X fo_
Sxi X Sxi = ¢
. ;i
S))((Ial _ 6XI o XI
' oX. X
o B X. It is often the case that functions of interest are
Sxi — Xai 1 I i .
x, N @ o of the form expressed in the hypothesis of the
Xi theorem, and in these cases the previous claim is
correct
X%



Review from last time

o

Theorem: If f(x, ..X,,) can be expressed as f = X11ng X

m

where {a,, a,,... ..} are real numbers, then S; IS not dependent
upon any of the variables in the set {x,, ..X,} |



Review from last time

o

Theorem: If f(x,, ..x.,) can be expressed as f = Xilxgl2 X

m

where {a,, a,,... a,,} are real numbers, then the sensitivity terms in

k
df _ Slst| ax;
Xi | v
f i=1 X XiN
are dependent only upon the circuit architecture and not dependent
upon the components and and the right terms are dependent only upon
the components and not dependent upon the architecture

This observation is useful for comparing the performance of two or more circuits
where the function f shares this property



Review from last time

Metrics for Comparing Circuits

Summed Sensitivity

Ps = ZS;,
i—1

Not very useful because sum can be small even when individual
sensitivities are large

Schoeffler Sensitivity
m
=[S
/0 o X
1=1

Strictly heuristic but does differentiate circuits with low sensitivities from those
with high sensitivities




Review from last time

Metrics for Comparing Circuits

p=2S!

Often will consider several distinct sensitivity functions to consider
effects of different components

Pr = Z ‘SH

All resistors

Pc = Z ‘SI:,‘

All capacitors

Poa = Z

All op amps

Of

T




Review from last time

Homogeniety (defn)

A function f iIs homogeneous of order
m in the n variables {X, X,, ...X} If

f(AXy, A5, ..o AX ) = ATM(X, X5, ..o X4)

Note: f may be comprised of more than n variables



Theorem: If a function f is homogeneous of order m
in the n variables {x,, X,, ...x.} then

n
f —
>S =m
=1
f(AXy, AXy, . AX, ) = AT (X, Xp000X, )

The concept of homogeneity and this theorem were
somewhat late to appear

Are there really any useful applications of this rather odd
observation?



Theorem: If all op amps In a filter are
Ideal, then w,, Q, BW, all band edges,
and all poles and zeros are homogeneous
of order O In the impedances.

Theorem: If all op amps In a filter are
ideal and if T(s) is a dimensionless transfer
function, T(s), T(jw), | T(w)|, £T(jw) , are
homogeneous of order O in the impedances



Theorem 1. If all op amps In a filter are
iIdeal and If T(s) Is an Impedance transfer
function, T(s) and T(jw) are homogeneous
of order 1 in the impedances

Theorem 2:  If all op amps in a filter are
ideal and If T(s) Is a conductance transfer
function, T(s) and T(jw) are homogeneous
of order -1 in the impedances



Review from last time

Corollary 1: If all op amps in an RC active
filter are ideal and there are k, resistors and k,
capacitors and if a function f is homogeneous of
order O in the impedances, then

o ke
ESRi_ igsci

Corollary 2:  If all op amps in an RC
active filter are ideal and there are k,
resistors and k, capacitors then
kl
>S2=0
=1

Ko
>S2=0
I=1 !



Example R,

Vi ’\/I?/i/‘ Vour
Vin ~ Cq 7~ C,
A4
Determine the passive Q sensitivities SQ SQ SQ SQ
Ry R Cy C,
Vour (SC1+Gz) = V|G, T( ) 1
S) =
V, (SC,+G,+G, )=V, G, + Vour G, s*(RR,C.C,)+s(R,C,+R,C,*+R,C,)+1
1 RRCC.
W, = Q= RR,C,C,
JRR,C.C, R.C,+R.C,+R,C,
By the definition of sensitivity, it follows that
1 -1/2 1/2
SQ (R1C1+R1C2+R2C1)Z(RlRZClCZ) I:22(:1C:2- (C1+C2 )(RlRZClCZ ) Rl
R, = *

(R1C1+R1C2+R2C2 )2 Q



Example R,

Vi R Vour
AN
Vin T~ Cq T~ C,
7
Determine the passive Q sensitivities SQ SQ SQ SQ
Ry R Cy C,

1 -1/2 1/2
. (R1C1+R1C2+R2C1)2(R1R2C1C2) “R,CC,-(C,+C,)(RR,CC,)" R,

(R1C1+R1C2+R2C2 )2 Q

Following some tedious manipulations, this simplifies to

o 1 RJ(CHC,)

%" 2 RCH+RC,+R.C,




Example AANA ANAN

Vin @

Y
A
O
[
\
/
O
N

Determine the passive Q sensitivities 4

Following the same type of calculations, can obtain

Q _ 1_ Rl(C1+C2) SR — 1_ R2C2
“ 2 RC+RC,+R.,C, = 2 RC+RC,+R,C,
qe _1_ RlCl SQ :1_ Cz (R1+R2)
“ "2 RC+RC,+R,C, ? 2 RCHRC+RC,
Verify K, K1 ~0
i=1 i 1= :

Could have saved considerable effort in calculations by using these theorems after

Sg and Sg were calculated
1 1



Corollary 3:  If all op amps in an RC
active filter are ideal and there are k,
resistors and k, capacitors and if p, is any
pole and z, Is any zero, then

G kﬁ = _q
i:zi Rl:: -1 STG

and "
»Sr= —1 250= -1



Corollary 3:  Ifall op amps in an RC
active filter are ideal and there are k,
resistors and k, capacitors and if p, is any
pole and z, Is any zero, then

Izzlsgf: -1 > = -1
and )

2Sp=-1 3=l
Proof:

It was shown that scaling the frequency dependent elements by a factor n divides
the pole (or zero) by n

Thus roots (poles and zeros) are homogeneous of order -1 in the frequency
scaling elements



Proof:

Thus roots (poles and zeros) are homogeneous of order -1 in the frequency
scaling elements

(For more generality, assume Kk, inductors)
K> 0 K 0
>SL XS = -1 @
=1 i =1 b

Since impedance scaling does not affects the poles, they are homogenous of
order O in the impedances

Ky 0 K> 0 Ks 0
>SS, +y S +>S°=0 2
“= R < 1/C, = L
I=1 | | !
Since there are no inductors in an active RC network, is follows from (1) that
K, 0 1
5S¢ =-
And then from (2) and the theorem about sensitivity to reciprocals that

Ky
i:zl Sgi =1



Corollary 4:  If all op amps in an RC
active filter are ideal and there are k,
resistors and k, capacitors and Iif Z, IS any
iInput Impedance of the network, then

Kq K,
Z Sél.N _ Z SéN — 1
i=1 ! i=1 !



Claim: If op amps in the filters
considered previously are not ideal but are
modeled by a gain A(s)=1/(zs), then all
previous summed sensitivities developed for
ideal op amps hold provided they are
evaluated at the nominal value of t=0



Sensitivity Analysis

If a closed-form expression for a function f
IS obtained, a straightforward but tedious
analysis can be used to obtain the
sensitivity of the function to any
components g = of X

* ox f

Closed-form expressions for T(s), T(jw), [T(w)|, £T(jw) , &;, b;, can be
readily obtained



Sensitivity Analysis
If a closed-form expression for a function f is
obtained, a straightforward but tedious analysis
can be used to obtain the sensitivity of the
function to any components

szﬁf.§
I ° . S H
Consider: mo m

n

T(S):izo _ -K |:]1
sbs fi(s-p)

Closed-form expressions for p;, z;, pole or zero Q, pole or zero
Wy, peak gain, wsyg, BW, ... (generally the most critical and
useful circuit characteristics) are difficult or impossible to

obtain !



Bilinear Property of Electrical Networks

Theorem: Let x be any component or Op Amp time constant
(15t order Op Amp model) of any linear active network
employing a finite number of amplifiers and lumped passive

components. Any transfer function of the network can be
expressed in the form

T(s):NO (s)+xN,(s)

D, (s)+xD,(s)

where Ny, N,, Dy, and D, are polynomials in s that are not dependent upon x

A function that can be expressed as given above is said to be a bilinear

function in the variable x and this is termed a bilateral property of electrical
networks.

The bilinear relationship is useful for

1. Checking for possible errors in an analysis
2. Pole sensitivity analysis



Example of Bilinear Property : +KRC Lowpass Filter

Cy
Ay
J
Ry R > Vour
ViN C, 1
s K
T(S)_ R1|Q2C:1C:2
) 1 1 (1K) 1 X 1 1 1 1
S°+s + + + +K,7S| s°+s + + +
RlC:l RZCl R2(:2 RlRZC:l(:Z Rlcl R2(:1 R2C2 RlRZClCZ
Consider R;
KO
T(S): R,C.C,

1-K
R,s°+s i+Rl 1 +Rl( o) b1 +K,rs| R;s’+s i+Fe1 1 +R, t 1
C:l IQ2(:1 RZCZ RZClCZ c:1 RZCl RZCZ IQZ(:1C:2

KO
R, e|0
{chlcj* o[0]

) 1-K
st 1 +K,7s st |+ 1 +R,| s°+s ! +( o) +K,7s| s*+s CH
C, R,CC, C,) R,CC, R,C, R,C, R,C, R,C,



Example of Bilinear Property

C
AY
A
W%
_/\/\/\/\l/i R2 Vl(G1+Gz+SC) = \/ING1+VOUT (SC+Gz)
VIN _VOUT
: (5
1 ouT 1 7S
A(S):g R
T(s) = 2
R,+RR,Cs+7s(sCRR,+R,+R,)
Consider R,
T(s) = -R, +0eR,

[7SR,]+R,[1+R,Cs+75(SCR,+1) |

Consider 1
-R, +0er
T(s) = 2
() |R,(1+R,Cs) |+7| SR, +SR, (SCR,+1) |




Example of Bilinear Property : +KRC Lowpass Filter

&
Ay
/|
Ry R; Vour Equal R Equal C
_/\/\/\/\_
ViN C, 1 Ijo S
T(s)= R°C
2 (3'K0) 1 2 3 1
S°+s +— 5 +K 78| s°+s +t
RC R°C RC| R°C
KO

T(s)=

R?(C?s® +K,rsC? ) +R(SC(3-K, ) +3K,C78% ) +(1+K,75)

Can not eliminate the R2 term

* Bilinear property only applies to individual components

* Bilinear property was established only for T(s)



Root Sensitivities
Consider expressing T(s) as a bilinear fraction in X
N, (5)+xN, (s) _N(s)

T(8)%p,, (s), (s) ~D(s)

Theorem: If z;, is any simple zero and/or p; is any
simple pole of T(s), then
\

) | e o) B

. dz; ) . dp )

Note: Do not need to find expressions for the poles or the zeros to find the pole
and zero sensitivities !

Note: Do need the poles or zeros but they will generally be known by design

Note: Will make minor modifications for extreme values for x (i.e. T for op amps)



Root Sensitivities

Theorem: If p; is any simple pole of T(s), then

dp,

Proof (similar argument for the zeros)

D(5)=D, (5) 4D, (5)

By definition of a pole,

D(p;)=0
D(p;)=D, (p;)+XD, (p;) =0



Root Sensitivities
D(p;)=D, (p;) +XD; (p;)

Differentiating this expression implicitly WRT x, we obtain

oD, (P;) op, n {X oD, (p,) op, +D, (p, )} .y
op, OX op;  OX

Re-grouping, obtain

op, |:8DO (P) XaDl(pi)} - D, (p,)

OX | Op, op,
But term in brackets is derivative of D(p;) wrt p;, thus
op, D, (p))

op,

oX (8D(pi)]



Root Sensitivities

op, __ Dyi(p)
OX (@fg(pi)]
P

Finally, from the definition of sensitivity,

op,




Root Sensitivities
S Xop; _ (xj(Dl(p)

p. OX p. 8D(pi)j
op,
Observation: Although the sensitivity expression is readily
obtainable, direction information about the pole movement is

obscured because the derivative is multiplied by the quantity p;
which is often complex. Usually will use either

opi:%
or * OX
épizxapi:_(X] Dl(pl)
" py| ox p.|){ OD(p;)
op,

which preserve direction information when working with pole or
zero sensitivity analysis.



Root Sensitivities

Summary: Pole (or zero) locations due to component
variations can be approximated with simple analytical
calculations without obtaining parametric expressions for
the poles (or zeros).

p = P ligea + Ap, where Api ~ AX ® ofi

Components

Pi

(I(g )') and D(s) =D, (s)+xD,(s)

3, =
( ap' ij
Alternately, Ap. = (p ijép
i i X




Example: Determine S'OR' for the +KRC Lowpass Filter for equal R, equal C
1

Cy
)] T(\,:,):NO(S)+><N1(S)
Ry R : Vour D, (S) +XD, (S)
AN\ —
Vin Co T épi :Lapi :_( Xj Dl(pl)
X
K(s)= Ko ;| 0x o ){ oD (p;)
J7 1+K,zs op.
|
KO
T(S): R1R2C1C2
st+s| * L (K)], 1 iKrs|stos| ety by 1
R,C, "R ,C, RC, | RRCC, ° RC, R,C, RC,| RR,CC,
write in bilinear form Ko
T(s)= R,C.C,
1 1 1 1 2 1 (1-Ky) 1 1
S+ +KyzS| s — |+ +R, | s°+s + +K,zs| s°+s +
C, R,.CC, C,) R,CC, R,C, R,C, R,C, R,C,
evaluate at =0 Ko
T(s)= R

[



VIN

Example: Determine S'OR' for the +KRC Lowpass Filter for equal R, equal C
1

C,
\| N, (S)+XN, (s
) T(S):D ( ) D( )
R Rz Vout O(S)+X 1(S)
e Sp, _ X 0P, :_( X | Di(p)
=T ‘. S (c’ﬂD(pi)]
T ()= Tik,rs op,
T(s)= R;éjcz Dl(s):szt{ 1 +(1-K0):|
( 11 1 j {2 { 1 (l-KO)ﬂ R,C, R.C,
S+ + +R,|s°+s +
C, R,CC, R,.CC, R,C, R,C,

D(s)=

~

P _

_pi o

Ry

|

1-K
Si+ t 1 +R, | s*+s L +( 0) =R, 32+3{&}+w§
C, R,CC, R,CC, R,C, R,C, Q

1 +(1-|<0)}

2
+
x&pi__£1 P p_chl R,C,
|

‘pi

W
2p. + -0
p+ %)



Example: Determine S'OR' for the +KRC Lowpass Filter for equal R, equal C
1

N +XN
\Cl T(S): O(S) X l(S)
| D, (s)+xD,(s)
Ry R: Vour
Sp _ X op; _ (Xj D, (p))
Vin C, 1 X -
i K, p; OX o [8D(pi)]
T ()= Tok,rs op,
p2+p_ 1 +(1'K0) K,
ép _xop_ |1 |RC, RG, T(s)= RR,C.C,
“lplox  py W, grg| Lo 1 ,AK)] 1
| | 2p, +Q RC, RC, R.C, | RR,CC,
1 . | R
ép_xapi_(ljRRCC PP RC T Re TR, | 'RR.CC,
R; - -
prox b (Zp, N ¢ 5.0 | S
PP RC, RC, | RRCC, "RC,

w3+
ép _ L apl _ 1 ° Rlcl
mplox ( W,



Example: Determine S'OR' for the +KRC Lowpass Filter for equal R, equal C
1

Cy
)|
R, R, Vv W+ p1
—/\Mﬁ—% out épi _ X op. ZK 1 ) R,.C,
ViN C, 1 ‘pl‘ OX wo (Zpl _|_(ng
K(s)= e
J7 1+K,7s
1
Forequal R,equalC W, = RC
) w2y Wo [14@?
ép :Xapi:(ljwo"-pwo SE: 2Q 2Q
R, ‘pi‘ ox (w, (Zp-+woj L J—F(g) 1-4Q?
Q
S X op; _ Wetp N Q_lil 1-4Q°
R p;| ox w Sp - 2 2
pl 2p+70 R
Q 1 +1-4Q°



Example: Determine S'OR' for the +KRC Lowpass Filter for equal R, equal C
1

C,
) Sp - X P,
R R V P, OX

1 _/\/\/\/\_4@ ouT
For equal R, equal C
ViN C, 1 11
K(s)=——2 . Q- * V1-4Q7
J7 1+K,zs p 2 2
' +1/1-4Q?

Note this contains magnitude and direction information

. 1 102
ForhighQ &, QF;V4Y Qijo 1+ js1 1,1,

-4+ =

4 JaQr tj2Q  xj2 2 272

Ap, = |p,|SP AX
X

AR,

Ap; = w, (0.5+0.5])

1




Example: Determine SE' for the +KRC Lowpass Filter for equal R, equal C
1

C,
)| &p _ X 0P,
Ry R: Vour ' ‘pl‘ 2
For equal R, equal C
ViN C, 1
K
K — 0
J7 () 1+K,zs
AR
For h|gh Q Apl =W, (OSi 051) R 1

1 .
Could we have assumed equal R equal C before calculation?
No ! Analysis would not apply (not bilinear)
Results would obscure effects of variations in individual components

Was this a lot of work for such a simple result?

Yes! Butitis parametric and still only took maybe 20 minutes

But it needs to be done only once for this structure
Can do for each of the elements

What is the value of this result?

Understand how components affect performance of this circuit

Compare performance of different circuits for architecture selection



Transfer Function Sensitivities

_ GT(w)

S=jw

S;l(—(jw) — SI(J“’) 4+ 1982 where 0=/T(jw)

Ges)




Transfer Function Sensitivities

If T(s) is expressed as T(s) = 50—>= )

>as'S* ybs'Sh
=0

then ST(S) __i=0

“ N(s)  D(s)

If T(s) is expressed as  T(s) =

g1l _ X[Do(S)Ny(5)-No (5)Dy(s) ]
“ (Ny(s)+xN,(s))(D, (s)+xD,(s))




Band-edge Sensitivities

The band edge of a filter is often of interest. A closed-form expression for
the band-edge of a filter may not be attainable and often the band-edges
are distinct from the w, of the poles. But the sensitivity of the band-edges
to a parameter x is often of interest.

T(jw) 4

Want ch . awc X



Band-edge Sensitivities

T(jw) 4

|
We \ W

Theorem: The sensitivity of the band-edge of a filter is given by the expression

ST(jw)‘
Sy = ST(iw)

W=W¢



Band-edge Sensitivities
T(jw) {

Proof:

e AT (jw) | AT(jw)

ow AW
| | O/T (jw)
OT(jw) _AT(jw) Ax | ox
ow  AX AW 0w

oX

ey



Band-edge Sensitivities

O[T (jw)
OT(jw) _AT(jw) Ax _  ox
ow  AX Aw 0w
OX
0T (jw)
ow _ OX
ox [T (jw)
ow
6T(jw) . X
ow _ OX T(jw) (w
GX:aT(jw) w (Xj
ow .T(jw)
8T(jw) . X
ow (x)_  OX T(jw)
(%('(wjzéT(jw) ©
ow .T(jw)

eV




Sensitivity Comparisons

Consider 5 second-order lowpass filters

(all can realize same T(s) within a gain factor) C
1
R L S
NN —0T0 Vour R, R,
L —VVV! A% K —
VIN% — C VN i D(VOUT
I T™
Passive RLC +KRC

(a) (b)

C
Y. AN R
AN R1 Q
VW WY C1 Co, Ry
Rj R, R, Ro —{ R AN Rj
MM 1 C, Vi A .
VIN > VOUT
j Vour Two-Integrator Loop
Bridged-T Feedback (d)

()



Sensitivity Comparisons

Consider 5 second-order lowpass filters

(all can realize same T(s) within a gain factor)

Rs
ANAN
— A
R, R, R4 Rs
L AN AAAALS
VOUT
+
Vin c c T K = E_

-KRC Lowpass

(€)

For all 5 structures, will have same transfer function within a gain factor

2
Kwy

T(s)= —*d
S°+s 0+’



a) — Passive RLC




b) + KRC (a Sallen and Key filter)

Cy
Y
7|
Rl R2
AN ; Vo
Vin C, ™ A A A A
Rs
—
K =1+5s
R4
kK
T(s) = RR,C,C,
s 1 (\/Rlc1 +\/ch2 +\/R1C2 « qu) L1
JRR.CC, JARC, VRC, RC, \RC, )| RR,CC,
1

Q =
w, = ; R1C1 + I:22C2 + R1C2 —K R1C1
\RR.CC, R,C, \RC, \R,C, R,C,



Case bl:Equal R, EqualC =

W
S°+s—2 +w;




c) Bridged T Feedback c,

j* Vour

1
T(s) = RR,C,C,
S?+s ( /CZ] 1 \/Rl +JR2+ R |l 1
C, IJRR,CC, IVR: VR, R, RR,C.C,
= 1 Q: 1

W
i R1R2C1C2 & &4. &4.@
c, VR, \R, R,

If R,=R,=R,=R and C,=9Q%C,
1

9Q’R*C?

) 1 1
S™+S +
3Q°RC, )| 9Q°R’C?

T(s) =




d) 2 integrator loop

A
R, Ro
C1 ' R
C 4
Ro € R, =2/ R; VW
V|N /\/\/\/\ J]}/J\/\/\/\_ /J\/\/\/\_ |
[ [ Vout
R,, 1
(s) = - R, R,R,CC, o, = \/R4. 1
S?4s 1 +R4. 1 R, R\R,CC,
RQC2 R, R,R,CC,
R C
Q= ——2 |z
JRR,\C,
FOI’ R0: Rl — R2: R Cl = C2: C R — R4
1
22
T(s) = R7C




d) - KRC (a Sallen and Key filter)

R3
AVAVAVA
——AA—
Rl R2 R4 R5
NN T ANV = Vout
"
Vin c. T c, T K = 2_
N K
T(S) = - R1R2C1C2
HlR]( YN Loy j}“(Rl/Rs><1+K>+<R1/R4><1+R2/R3+R2/Rl>
s ARG, C, \R,C, R,C, RR,CC,
\/1+(R1/R3)(1+K)+(R1/R4)(1+R2/R3+R2/R1)
IQll:QZClCZ
w = 1+(R,/R;)(1+K)+(R,/R,)(1+R,/R; +R, /R)) Q= - . A . .
- R CIRAIEIENIEN
J5+K,
Often R,=R,=R;=R,=R, C,;=C,=C Q=

5
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Stay Safe and Stay Healthy !







